
Supplementary materials 

Section 1: Bell-CHSH Inequality Test 

The Bell–CHSH inequality provides a powerful means of distinguishing quantum 

entanglement from classical correlations. In our experiment, we conducted a full Bell 

test based on the Clauser–Horne–Shimony–Holt (CHSH) formulation1, employing 

polarization-entangled photon pairs. The experimental configuration and measurement 

procedure were inspired by the seminal work of Weihs et al2. 

The experiment involved two spatially separated observers, Alice and Bob, each 

independently selecting one of two measurement settings corresponding to distinct 

polarization analyzer orientations. For polarization-entangled states, quantum 

mechanics predicts correlations between their measurement outcomes that can violate 

the CHSH inequality. 

For any pair of analyzer settings (𝛼, 𝛽), the normalized correlation function 𝐸(𝛼, 𝛽) 

is defined as: 

𝐸(𝛼, 𝛽) =
𝑁++(𝛼, 𝛽) + 𝑁−−(𝛼, 𝛽) − 𝑁±(𝛼, 𝛽) − 𝑁∓(𝛼, 𝛽)

𝑁++(𝛼, 𝛽) + 𝑁−−(𝛼, 𝛽) + 𝑁±(𝛼, 𝛽) + 𝑁∓(𝛼, 𝛽)
(1) 

where 𝑁𝑖𝑗represents the coincidence counts for Alice’s outcome 𝑖 and Bob’s outcome 

𝑗 , with +  and −  representing projections parallel and orthogonal to the selected 

analyzer angle, respectively. 

The Bell-CHSH parameter S is then calculated from four correlation measurements 

at specific angle configurations: 



𝑆 = |𝐸(𝛼，𝛽) − 𝐸(𝛼′，𝛽)| + |𝐸(𝛼，𝛽′) + 𝐸(𝛼′，𝛽′)| (2) 

Quantum mechanics predicts violations of Bell's inequality for certain combinations 

of analyzer orientations. In particular, maximal violation is achieved using the angle 

settings 0°, 45°, 22.5°, and 67.5°. By inputting the coincidence count data from Table 

1 into Eq. (1), we obtained the correlation values presented in Table 2. Subsequent 

substitution of these values into Eq. (2) yielded a Bell parameter of S = 2.662 ± 0.006, 

demonstrating clear violation of the classical bound. 

Section 2: Target Object Details 

This section presents the phase-only object pattern (the "flower" pattern) demonstrated 

in the main text. The phase of the "flower" structure increases incrementally from 0 

(core) to 𝜋 (background), with a gradient of 
𝜋

6
 , resulting in six discrete phase levels. 

Using a commercial finite-difference time-domain (FDTD) solver, we numerically 

simulated the phase sample. The dimensions of the cylindrical 𝛼-Si nanopillars were 

designed to meet the phase requirements of each "flower" region, followed by etching 

into a silica 𝑆𝑖𝑂2 substrate. A monitor was placed above the pillar array, while the light 

source was positioned below the substrate. This configuration ensured that incident 

light accumulated spatially varying phase shifts through the nanopillars. The region 

above the substrate (unmodulated by the metasurface) is air under identical conditions. 

The monitor and light source were positioned at distances 𝐿𝑚  and 𝐿𝑠   from the 

metasurface, respectively. The phase detected by the monitor is denoted as 𝜑𝑚, with 

the substrate refractive index set to 1.5. The phase difference (∆𝜑) between modulated 



and unmodulated fields induced by the nanostructure is expressed as: 

∆𝜑 = 𝜑𝑚 −
2𝜋

𝜆
(𝐿𝑚 + 1.5𝐿𝑠) 

Using the above equation, we calculate the phase difference (∆𝜑) for six dielectric 

pillars with radii of 181 nm, 200 nm, 228 nm, 242nm, 264 nm, and 153 nm (comma 

added for list clarity). The height of each pillar is fixed at 500 nm, and the lattice 

periodicity of the nanostructures is 400 nm. All six pillars exhibit high 

transparency, ensuring no intensity modulation of the optical field. 

The fabricated phase pattern is shown in Fig. S1, where yellow, light pink, dark pink, 

light green, dark green, and blue regions correspond to nanopillars with phase 

differences (∆𝜑 ) of 0, 
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  and 𝜋  respectively. The nanopillars are 

arranged in a 320 × 320 array. Owing to the rotational symmetry of the nanopillars, the 

phase distribution is polarization-independent. 

We emphasize that this phase object (the "flower" pattern) serves exclusively as a 

proof-of-concept demonstration. Crucially, our proposed reconstruction method 

requires no prior knowledge of the sample’s phase distribution.  

Section 3: Simulation of Imaging Performance under Different Illumination 

Conditions 

To further validate the applicability and robustness of the proposed imaging scheme in 

practical scenarios, we performed systematic numerical simulations under various 

illumination conditions. Specifically, we compared the system’s performance using 



both plane wave and Gaussian beam illumination (beam waist w0 = 0.5 mm) , with a 

fixed wavelength of 780 nm. The test sample was a representative “flower” phase 

structure. 

As shown in Fig. S2, the imaging results under both bright-field and dark-field 

configurations exhibit high contrast and image quality, regardless of whether the 

illumination is a Gaussian beam or a plane wave. This confirms that the proposed 

method is highly robust with respect to the spatial profile of the input beam and is well-

suited for diverse experimental conditions. 

In addition, we evaluated the sensitivity of the system to variations in the incident 

angle. Simulations were conducted by introducing small angular deviations to the 

incident plane wave. As illustrated in Fig. S3, the imaging performance remains stable 

when the incident angle deviates by less than ±0.05°, with negligible degradation in 

image quality. However, larger angular deviations lead to a noticeable decrease in 

contrast and resolution. These results indicate that while the system is tolerant to 

different types of illumination beams, it is relatively sensitive to the incident angle and 

requires precise angular alignment in practical implementations. 

In summary, the proposed imaging scheme demonstrates strong versatility with 

respect to beam type, and emphasizes the importance of angular precision to ensure 

optimal performance. 



Section 4: Robustness Evaluation of Bright-Dark Phase Contrast Imaging Method 

for Arbitrary Phase Distributions 

To evaluate the robustness and general applicability of our phase imaging method, we 

conducted numerical simulations using Gaussian beam illumination (λ = 780 nm, beam 

waist = 0.5 mm). Two types of phase samples were tested: (1) uniform phase-gradient 

objects (Fig. S4) as idealized models, and (2) complex samples with randomized phase 

profiles (Fig. S5), mimicking biological tissue structures. 

The results show that our method ensures high-contrast imaging in at least one mode, 

enabling observation of biological cells with complex phase structures regardless of 

their phase complexity. This demonstrates strong adaptability and broad potential for 

biomedical applications such as cell morphology analysis, tissue diagnostic, laying a 

solid foundation for future advances in phase imaging of complex biological specimens. 

Table 1 Coincidence Measurements for Evaluation of Bell Inequality 

Polarizer Angle N 

    Bob 

Alice 

22.5° 

（+） 

112.5° 

（-） 

-22.5° 

（+） 

67.5° 

（-） 

0°（+） 2438 13148 3165 13578 

90°（-） 16452 4113 17420 2607 

45°（+） 17435 1888 4135 14901 

-45°（-） 5014 13782 18584 1772 

 



Table 2 Correlation Measurements for Calculation of the Bell-CHSH Parameter 

Polarizer Angle/(°) E ∆E 

0, 22.5 -0.638 0.002 

0, 67.5 0.638 0.004 

45, 22.5 -0.686 0.002 

45, 67.5 -0.700 0.003 

 

Fig. S1 Phase object 

 

Fig. S1 Phase distribution of the "flower" pattern. The pattern consists of multiple spatial regions with 

distinct phase shifts, represented using color coding. Specifically, the yellow core corresponds to a phase 

shift of 0, followed by the light pink first petal layer with a phase of 𝜋/5, and the darker pink second 

petal layer with 2𝜋/5. The light green stems carry a phase of 3𝜋/5, while the dark green leaves represent 

4𝜋 /5. The surrounding blue background completes the structure with a phase shift of 𝜋 . This well-

defined, layered phase distribution serves as a structured and interpretable test sample for evaluating the 

system’s phase sensitivity and spatial resolution. 



Fig. S2 Bright-dark phase contrast imaging effects under different types of 

incident illumination. 

 

Fig.S2 Phase contrast imaging results of the "flower" sample under different types of illumination 

conditions: (a) bright-field and (b) dark-field images under Gaussian beam illumination (beam waist 𝑤0 

= 0.5 mm); (c) bright-field and (d) dark-field images under plane-wave illumination (λ = 780 nm). 

Fig. S3 Sensitivity of imaging performance to incident angle deviations in 

Gaussian beam illumination. 

 

Fig.S3 Phase contrast images were simulated with Gaussian beam illumination. From left to right, the 

incident angles are 1.00°, 0.10°, and 0.05°. Imaging quality decreases noticeably at larger angles but 

remains stable within ±0.05°. This demonstrates the system’s sensitivity to incident angle alignment. 
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Fig. S4 Imaging simulation with varying constant phase gradients 

 

Fig. S4 Simulated bright-field and dark-field phase-contrast imaging of pure-phase objects with uniform 

phase gradients (
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). The simulation results demonstrate that our method achieves 

consistent contrast performance across all tested phase gradients. 
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Fig. S5 Imaging simulation with arbitrary phase distributions 

 

Fig. S5 Simulated phase contrast imaging of a complex-phase object with random phases. Simulations 

were performed under 780 nm illumination, demonstrating the method's capability to resolve fine 

structural details regardless of phase complexity. 
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